•  
  •  
 

Abstract

This study introduces an innovative approach employing N-(3-benzylureido)(methyl)-2-(6-methoxynaphthalen-2-yl)propanamide (J10) as an additive for recycled polyethylene terephthalate (PET) to produce thin film (J10-PET thin film), with a focus on their application in the removal of methylene blue (MB) and methyl orange (MO) from aqueous solutions. The study is primarily focused on unraveling the kinetics and equilibrium behaviors governing the removal of MB and MO. The investigation includes the determination of the equilibrium adsorption capacities (Qe) of MB and MO at different temperatures (308, 323, and 333 K) and concentrations (5, 10, and 15 mg/g). Remarkably, the pseudo-second-order model is found to best elucidate the adsorption kinetics for both MB and MO. Notably, the J10-PET thin film exhibits promising results with an activation energy of 14.42 kJ/mol for MB and 36.08 kJ/mol for MO, indicating its potential for effective pollutant removal. This research contributes to a comprehensive understanding of adsorption processes and highlights the J10-PET thin film as a promising solution for addressing MB and MO pollutants in aqueous environments.

Keywords

Curcumin, Distribution, Metabolism, Molecular docking, Toxicity

First Page

394

Last Page

405

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Receive Date

9-23-2023

Revise Date

12-18-2023

Accept Date

12-20-2023

Share

COinS